JAMPI: Efficient Matrix Multiplication in Spark Using Barrier Execution Mode

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Mode Matrix Multiplication

In modern clustering environments where the memory hierarchy has many layers (distributed memory, shared memory layer, cache, ), an important question is how to fully utilize all available resources and identify the most dominant layer in certain computation. When combining algorithms on all layers together, what would be the best method to get the best performance out of all the resources we h...

متن کامل

Efficient Matrix Multiplication in Hadoop

In a typical MapReduce job, each map task processing one piece of the input file. If two input matrices are stored in separate HDFS files, one map task would not be able to access the two input matrices at the same time. To deal with this problem, we propose a efficient matrix multiplication in Hadoop. For dense matrices, we use plain row major order to store the matrices on HDFS; For sparse ma...

متن کامل

Efficient Implementation of Interval Matrix Multiplication

The straightforward implementation of interval matrix product suffers from poor efficiency, far from the performances of highly optimized floating-point implementations. In this paper, we show how to reduce the interval matrix multiplication to 9 floating-point matrix products for performance issues without sacrificing the quality of the result. We show that, compared to the straightforward imp...

متن کامل

Efficient Sparse Matrix-Vector Multiplication on CUDA

The massive parallelism of graphics processing units (GPUs) offers tremendous performance in many high-performance computing applications. While dense linear algebra readily maps to such platforms, harnessing this potential for sparse matrix computations presents additional challenges. Given its role in iterative methods for solving sparse linear systems and eigenvalue problems, sparse matrix-v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Big Data and Cognitive Computing

سال: 2020

ISSN: 2504-2289

DOI: 10.3390/bdcc4040032